Литературно-публицистический журнал «Млечный Путь»


       Главная    Повести    Рассказы    Переводы    Эссе    Наука    Поэзия    Авторы    Поиск  

  Авторизация    Регистрация    Подписка    Друзья    Вопросы    Контакт      

       1    2    3    4  
  14    15    16    17    18    19    20    21      



Юрий  ЛЕБЕДЕВ

  НАНОМЕХАНИКА 

Конструкторская деятельность в области механики в наномире весьма перспективна вследствие весьма своеобразного «прочностного парадокса».  В механике известно, что при уменьшении размеров детали резко возрастает ее механическая прочность – масса уменьшается пропорционально кубу размера, а площади сечений – квадрату. И в 10 раз меньшая деталь оказывается в 10 раз прочнее. Это крайне важное обстоятельство делает перспективными сложнейшие конструкторские решения в области космического машиностроения. Парадокс заключается в том, что чем меньше и сложнее конструкция, тем она надежнее в работе! Разумеется, прочностные характеристики материалов в нанообласти существенным образом зависят от квантовых эффектов, но в данном случае это не противоречит классическим предсказаниям. Более того, в наномире гораздо легче создавать материалы с практически идеальной кристаллической структурой, прочность которых существенно превосходит поликристаллические материалы с дефектами структуры, которые используются в устройствах макромира.

 В 1978 году газета «Пионерская правда» опубликовала научно-фантастический рассказ известного теоретика изобретательской деятельности Генриха Сауловича Альтова (1926 – 1998) «20 лет спустя», где высказалась идея: «использовать атомы вместо колес» и иллюстрировалась таким рисунком:

                  

Для создания такого устройства необходимо найти сочетание атомов и атомно-молекулярные структуры, в которых силы химического взаимодействия обеспечивали бы возможность механического сопряжения. На рисунке, представленном во введении этой книги, показан проект создания «наноредуктора» из 15342 атомов. (анимацию см. http://kbogdanov1.narod.ru/nanotechnology/Drexler.htm). Несмотря на наличие других возможностей для передачи вращательного момента на наноуровне, такое устройство может быть востребовано практической наномеханикой. Этот пример демонстрирует важный принцип – возможность создания на наноуровне механических аналогов известных узлов и деталей современных машин.

     Имеются реальные химические структуры конструктивно необходимые для наномеханики. Перечислим некоторые из них: ротаксаны, катенаны, фуллерены и нанотрубки.

     Ротаксаны – соединения, молекулы которых состоят из цикла и открытой цепи, продетой сквозь цикл.

Из-за пространственных препятствий, создаваемых объемистыми группами X [например, (С6Н5)3С], разъединить такую композицию без разрыва химической связи невозможно.

Ротаксаны – соединения, молекулы которых состоят

из цикла и открытой цепи, продетой сквозь цикл.

 

С механической точки зрения молекулярная конструкция ротаксана соответствует оси на подшипнике. Он не требует смазки и не нагревается при работе. Кроме того, ротаксаны могут оказаться полезными и при создании новых «классических компьютеров» – на принципе смещения ротаксанного кольца уже создан экспериментальный микрочип, плотность битов у которого составляет около 100 млрд на 1 кв. см – примерно в 40 раз выше, чем у современных микросхем памяти.

Ниже приведена модель механического «молекулярного колеса», которое можно использовать в конструкциях нанороботов, а рядом – ее химическая структура.

 


Графен — двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом, находящихся в sp2-гибридизации и соединенных посредством σ- и π-связей в гексагональную двумерную кристаллическую решетку. Его можно представить как одну плоскость графита, отделенную от объемного кристалла.

 

                   

 

В 2010 г. Константин Гейм и Андрей Новоселов были удостоены Нобелевской премии по физике «За новаторские эксперименты по исследованию двумерного материала графена».

Листы графена могут сворачиваться в нанотрубки и образовывать сферические фуллерены.

 

                          

Нанотрубки и фуллерены как производные графена.

Ист. рис http://elementy.ru/news/430857

 

Углеродные нанотрубки – протяженные цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров состоящие из одной или нескольких свернутых в трубку графитовых плоскостей (графенов).

Они образуются, например, на поверхности графитового катода в электрической дуге между графитовыми электродами в атмосфере гелия. Отдельные нанотрубки достигают в диаметре 100 мкм. В зависимости от того, под каким углом была «свернута» графеновая плоскость при построении нанотрубки, результирующий материал имеет различные электрофизические свойства. Он может быть как металлом, так и полупроводником с заданной шириной запрещенной зоны.

Нанотрубки – это наиболее бурно развивающееся направление применения нанохимических конструкций. Уже есть сообщения об осуществляющемся применении углеродных нанотрубок в электронике, химическом катализе, медицине и других областях. Использование телескопических нанотрубок в наномеханике позволяет решить проблему не только передачи вращательного момента (что мы уже видели на примере ротаксанов), но и точно регулировать возвратно-поступательное перемещение деталей наномашин: В научно-исследовательском центре Эймса произведено присоединение молекулы бензола к внешней стороне нанотрубки для образования зубьев шестерни:

Шестереночная передача на базе нанотрубок

 

Сегодня практическая реализация конструкторских идей нанотехнологических устройств уже выходит на уровень массового производства. Так, на основе телескопических нанотрубок, еще в 2007 г. началось освоение в Швейцарии технологии серийного производства наноподшипников.

Фуллерены - новая аллотропная модификация углерода: полые сфероидальные молекулы Cn, образующие молекулярные кристаллы.

С химической точки зрения фуллерены – это сборка sp2-гибридизированных атомов углерода, которая включает в себя 12 пятичленных колец и (n/2-10) шестичленных. Фуллерены можно рассматривать и как продукт разрушения графеновой решетки пятичленными дислокациями.

 

                    

                                                       Фуллерен С540

 

Простейшим стабильным фуллереном является фуллерен С60. Из-за большой внутренней полости фуллерены могут использоваться и как «грузовые емкости», и как сферические «колеса». В университете Райса (Техас) создано реальное транспортное устройство наномасштаба – «нанокар» – наноструктуры с четырьмя «колесами» из молекул фуллерена С60 и «осью» из полифенилацетилена по поверхности Au(Ш). Движение «наномашины» регистрируется сканирующим туннельным микроскопом.3

 

   

         Нанокар

 

Как видим, Г. Альтов ошибся всего на 7 лет – не в 1998 году, а в 2005 году атомных размеров колесо поехало по поверхности кристалла…




Комментарии

  Михаил  ШУЛЬМАН   НОВОСТИ КОСМОЛОГИИ


 
Copyright © 2015-2016, Леонид Шифман